Pollen tube energetics: respiration, fermentation and the race to the ovule
نویسندگان
چکیده
BACKGROUND Pollen tubes grow by transferring chemical energy from stored cellular starch and newly assimilated sugars into ATP. This drives myriad processes essential for cell elongation, directly or through the creation of ion gradients. Respiration plays a central role in generating and regulating this energy flow and thus in the success of plant reproduction. Pollen tubes are easily grown in vitro and have become an excellent model for investigating the contributions of respiration to plant cellular growth and morphogenesis at the molecular, biochemical and physiological levels. SCOPE In recent decades, pollen tube research has become increasingly focused on the molecular mechanisms involved in cellular processes. Yet, effective growth and development requires an intact, integrated set of cellular processes, all supplied with a constant flow of energy. Here we bring together information from the current and historical literature concerning respiration, fermentation and mitochondrial physiology in pollen tubes, and assess the significance of more recent molecular and genetic investigations in a physiological context. CONCLUSIONS The rapid growth of the pollen tube down the style has led to the evolution of high rates of pollen tube respiration. Respiration rates in lily predict a total energy turnover of 40-50 fmol ATP s(-1) per pollen grain. Within this context we examine the energetic requirements of cell wall synthesis, osmoregulation, actin dynamics and cyclosis. At present, we can only estimate the amount of energy required, because data from growing pollen tubes are not available. In addition to respiration, we discuss fermentation and mitochondrial localization. We argue that the molecular pathways need to be examined within the physiological context to understand better the mechanisms that control tip growth in pollen tubes.
منابع مشابه
Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis
In animal fertilization, multiple sperms typically arrive at an egg cell to "win the race" for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube. Here we report a fertilization recovery phenome...
متن کاملPollen tube growth: where does the energy come from?
This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mit...
متن کاملGamete Fusion Is Required to Block Multiple Pollen Tubes from Entering an Arabidopsis Ovule
In double fertilization, a reproductive system unique to flowering plants, two immotile sperm are delivered to an ovule by a pollen tube. One sperm fuses with the egg to generate a zygote, the other with the central cell to produce endosperm. A mechanism preventing multiple pollen tubes from entering an ovule would ensure that only two sperm are delivered to female gametes. We use live-cell ima...
متن کاملMale and female gametophyte development in Achillea tenuifolia (Asteraceae)
The anther, pollen and ovule development in Achillea tenuifolia were studied with a bright field microscopy. Results showed that the anther is of tetrasporangiate type and the anther wall is composed by four layers: an epidermis, an endothecium, one middle layer and a tapetum layer. Tapetum is of secretory type and its cells showed polyploidy. Pollen tetrads were tetrahedral, microspores were v...
متن کاملThe ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen.
Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a path...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011